

A272406


Primes p == 1 (mod 3) for which A261029(34*p) = 2.


6



7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 367, 373, 397, 409, 421, 439, 457, 487, 571, 709, 787, 877
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

By theorem in A272384, case q=17, the sequence is finite with a(n)<1156.


LINKS

Table of n, a(n) for n=1..44.
Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^33xyz, arXiv:1508.05748 [math.NT], 2015.


MATHEMATICA

r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3  3 x y z, {x, y, z}, Integers];
a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
Select[Select[Range[7, 997, 3], PrimeQ], a29[34 #] == 2&] (* JeanFrançois Alcover, Dec 01 2018 *)


CROSSREFS

Cf. A261029, A272381, A272382, A272384, A272404.
Sequence in context: A123365 A144921 A272409 * A272384 A040079 A038160
Adjacent sequences: A272403 A272404 A272405 * A272407 A272408 A272409


KEYWORD

nonn,fini,full


AUTHOR

Vladimir Shevelev, Apr 29 2016


EXTENSIONS

All terms (after first author's ones) were calculated by Peter J. C. Moses, Apr 29 2016


STATUS

approved



